1,275 research outputs found

    Thrust and torque vector characteristics of axially-symmetric E-sail

    Get PDF
    The Electric Solar Wind Sail is an innovative propulsion system concept that gains propulsive acceleration from the interaction with charged particles released by the Sun. The aim of this paper is to obtain analytical expressions for the thrust and torque vectors of a spinning sail of given shape. Under the only assumption that each tether belongs to a plane containing the spacecraft spin axis, a general analytical relation is found for the thrust and torque vectors as a function of the spacecraft attitude relative to an orbital reference frame. The results are then applied to the noteworthy situation of a Sun-facing sail, that is, when the spacecraft spin axis is aligned with the Sun-spacecraft line, which approximatively coincides with the solar wind direction. In that case, the paper discusses the equilibrium shape of the generic conducting tether as a function of the sail geometry and the spin rate, using both a numerical and an analytical (approximate) approach. As a result, the structural characteristics of the conducting tether are related to the spacecraft geometric parameters

    Venus-Centered Heliosynchronous Orbits with Smart Dusts

    Get PDF
    This paper deals with the problem of determining an analytical control law capable of maintaining highly elliptical heliosynchronous polar orbits around Venus. The problem is addressed using the Smart Dust concept, a propellantless propulsion system that extracts momentum from the solar radiation pressure using a reflective coating. The modulation of the thrust magnitude is performed by exploiting the property of electrochromic materials of changing their optical characteristics through the application of a suitable electrical voltage. The propulsive acceleration can, therefore, be switched from a minimum to a maximum value (or vice versa) so as to obtain a simple on–off control law. The required Smart Dust performance is described in closed form as a function of the semimajor axis and eccentricity of the working orbit. The soundness of the analytical control law is validated through a numerical integration of the equations of motion, in which the orbital perturbations due to the oblateness of Venus and to the gravitational attraction of the Sun are also included

    Optimal Planetary Rendezvous with an Electric Sail

    Get PDF
    The aim of this paper is to discuss Electric Solar Wind Sail-based missions towards Venus and Mars. The analysis takes into account the real three-dimensional shape of the starting and arrival orbits and the planetary ephemeris constraints, using the JPL planetary ephemerides model DE405/LE405

    Optimal solar sail transfers to circular Earth-synchronous displaced orbits

    Get PDF
    The aim of this paper is to evaluate the minimum flight time of a solar sail-based spacecraft towards Earth-synchronous (heliocentric) circular displaced orbits. These are special displaced non-Keplerian orbits characterized by a period of one year, which makes them suitable for the observation of Earth’s polar regions. The solar sail is modeled as a flat and purely reflective film with medium-low performance, that is, with a characteristic acceleration less than one millimeter per second squared. Starting from a circular parking orbit of radius equal to one astronomical unit, the optimal steering law is sought by considering the characteristic acceleration that is required for the maintenance of the target Earth-synchronous displaced orbit. The indirect approach used for the calculation of the optimal transfer trajectory allows the minimum flight time to be correlated with several Earth-synchronous displaced orbits, each one being characterized by given values of Earth- spacecraft distance and displacement over the ecliptic. The proposed mathematical model is validated by comparison with results available in the literature, in which a piecewise-constant steering law is used to find the optimal flight time for a transfer towards a one-year Type I non-Keplerian orbit

    AL Amyloidosis for Cardiologists: Awareness, Diagnosis, and Future Prospects: JACC: CardioOncology State-of-the-Art Review

    Get PDF
    Amyloid light chain (AL) amyloidosis is a rare, debilitating, often fatal disease. Symptoms of cardiomyopathy are common presenting features, and patients often are referred to cardiologists. Cardiac amyloid infiltration is the leading predictor of death. However, the variable presentation and perceived rarity of the disease frequently lead to delay in suspecting amyloidosis as a cause of heart failure, leading to misdiagnoses and a marked delay in diagnosis, with devastating consequences for the patient. A median time from symptom onset to correct diagnosis of about 2 years is often too long when median survival from diagnosis for patients with AL amyloidosis and cardiomyopathy is 4 months to 2 years. The authors highlight the challenges to diagnosis, identify gaps in the current knowledge, and summarize novel treatments on the horizon to raise awareness about the critical need for early recognition of symptoms and diagnosis of AL amyloidosis aimed at accelerating treatment and improving outcomes for patients

    Recent developments in the reduction of oxidative stress through antioxidant polymeric formulations

    Get PDF
    Reactive oxygen and nitrogen species (RONS) are produced endogenously in our body, or introduced through external factors, such as pollution, cigarette smoke, and excessive sunlight exposure. In normal conditions, there is a physiological balance between pro-oxidant species and antioxidant molecules that are able to counteract the detrimental effect of the former. Nevertheless, when this homeostasis is disrupted, the resulting oxidative stress can lead to several pathological conditions, from inflammation to cancer and neurodegenerative diseases. In this review, we report on the recent developments of different polymeric formulations that are able to reduce the oxidative stress, from natural extracts, to films and hydrogels, and finally to nanoparticles (NPs)

    Optimal Design for Vibration Mitigation of a Planar Parallel Mechanism for a Fast Automatic Machine

    Get PDF
    This work studies a planar parallel mechanism installed on a fast-operating automatic machine. In particular, the mechanism design is optimized to mitigate experimentally-observed vibrations. The latter are a frequent issue in mechanisms operating at high speeds, since they may lead to low-quality products and, ultimately, to permanent damage to the goods that are processed. In order to identify the vibration cause, several possible factors are explored, such as resonance phenomena, elastic deformations of the components, and joint deformations under operation loads. Then, two design optimization are performed, which result in a significant improvement in the vibrational behaviour, with oscillations being strongly reduced in comparison to the initial design

    An earth pole-sitter using hybrid propulsion

    Get PDF
    In this paper we investigate optimal pole-sitter orbits using hybrid solar sail and solar electric propulsion (SEP). A pole-sitter is a spacecraft that is constantly above one of the Earth's poles, by means of a continuous thrust. Optimal orbits, that minimize propellant mass consumption, are found both through a shape-based approach, and solving an optimal control problem, using a direct method based on pseudo-spectral techniques. Both the pure SEP case and the hybrid case are investigated and compared. It is found that the hybrid spacecraft allows consistent savings on propellant mass fraction. Finally, is it shown that for sufficiently long missions (more than 8 years), a hybrid spacecraft, based on mid-term technology, enables a consistent reduction in the launch mass for a given payload, with respect to a pure SEP spacecraft

    Logarithmic spiral trajectories generated by Solar sails

    Get PDF
    Analytic solutions to continuous thrust-propelled trajectories are available in a few cases only. An interesting case is offered by the logarithmic spiral, that is, a trajectory characterized by a constant flight path angle and a fixed thrust vector direction in an orbital reference frame. The logarithmic spiral is important from a practical point of view, because it may be passively maintained by a Solar sail-based spacecraft. The aim of this paper is to provide a systematic study concerning the possibility of inserting a Solar sail-based spacecraft into a heliocentric logarithmic spiral trajectory without using any impulsive maneuver. The required conditions to be met by the sail in terms of attitude angle, propulsive performance, parking orbit characteristics, and initial position are thoroughly investigated. The closed-form variations of the osculating orbital parameters are analyzed, and the obtained analytical results are used for investigating the phasing maneuver of a Solar sail along an elliptic heliocentric orbit. In this mission scenario, the phasing orbit is composed of two symmetric logarithmic spiral trajectories connected with a coasting arc

    Electric sail static structural analysis with finite element approach

    Get PDF
    The propulsive characteristics of an Electric Solar Wind Sail are usually evaluated using a simplified model in which all the sail tethers are coplanar and form a sort of rigid disk. However, the three-dimensional arrangement of the tethers is fundamental information in the study of the spacecraft performance, and must be accounted for in refined mission analyses. In this paper, a Finite Element approach is chosen to estimate the deflected shape of the tethers, thus allowing important information on the structural response of the sail to be obtained. A parametric code is developed to perform a static analysis of an Electric Solar Wind Sail, whose requirements are given in terms of payload mass and spacecraft characteristic acceleration. In particular, the tether structural response is investigated using three different beam models, which are compared in terms of accuracy and computational efficiency. The analysis is specialized to the noteworthy case of a Sun-facing sail that is placed at a distance of one astronomical unit from the Sun. The numerical results, which concern a set of possible sail configurations, are compared with those taken from analytical models
    • …
    corecore